A remark on derivations and skew-derivations on $\mathcal{D}(M)$
نویسندگان
چکیده
منابع مشابه
Generalized Skew Derivations on Lie Ideals
In [17] Lee and Shiue showed that if R is a non-commutative prime ring, I a nonzero left ideal of R and d is a derivation of R such that [d(x)x, x]k = 0 for all x ∈ I, where k,m, n, r are fixed positive integers, then d = 0 unless R ∼= M2(GF (2)). Later in [1] Argaç and Demir proved the following result: Let R be a non-commutative prime ring, I a nonzero left ideal of R and k,m, n, r fixed posi...
متن کاملDerivations and skew derivations of the Grassmann algebras
Surprisingly, skew derivations rather than ordinary derivations are more basic (important) object in study of the Grassmann algebras. Let Λn = K⌊x1, . . . , xn⌋ be the Grassmann algebra over a commutative ring K with 12 ∈ K, and δ be a skew K-derivation of Λn. It is proved that δ is a unique sum δ = δ ev + δ of an even and odd skew derivation. Explicit formulae are given for δ and δ via the ele...
متن کاملA Note on Skew Derivations in Prime Rings
Let m,n, r be nonzero fixed positive integers, R a 2-torsion free prime ring, Q its right Martindale quotient ring, and L a non-central Lie ideal of R. Let D : R −→ R be a skew derivation of R and E(x) = D(xm+n+r)−D(xm)xn+r − xmD(xn)xr − xm+nD(xr). We prove that if E(x) = 0 for all x ∈ L, then D is a usual derivation of R or R satisfies s4(x1, . . . , x4), the standard identity of degree 4.
متن کامل$(odot, oplus)$-Derivations and $(ominus, odot)$-Derivations on $MV$-algebras
In this paper, we introduce the notions of $(odot, oplus)$-derivations and $(ominus, odot)$-derivations for $MV$-algebras and discuss some related results. We study the connection between these derivations on an $MV$-algebra $A$ and the derivations on its boolean center. We characterize the isotone $(odot, oplus)$-derivations and prove that $(ominus, odot)$-derivations are isotone. Finally we d...
متن کاملSkew Derivations and Deformations of Algebras
We obtain deformations of a crossed product of a polynomial algebra with a group, under some conditions, from universal deformation formulas. These formulas arise from actions of Hopf algebras generated by automorphisms and skew derivations. They are universal in the sense that they apply to deform all algebras with such Hopf algebra actions, and we give one additional example.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1976
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1976-0391147-3